
The value of 6 h was taken in several cases as the theoretical value of the mean pore 
size. Figure 2a (curve II) shows the results of calculation~of ~h of an RPM from the formula 

8~ ~ 4 l ~ d ~  ; (12) 
Klti~ 1 --P 

this formula having been obtained on the basis of the relation ~h = f(p; Ssp) and Eq. (4). 

Equation (12) is a special case of Eq. (5) with K Z = 1 and coincides with the familiar re- 
lations proposed by Kozeni [i] and Karnaukhov [2] to calculate the mean size of por~s in por- 
ous materials from a model with nonintersecting capillary tubes, For this model,6 is iden- 
tical to 6 m 

av" 

NOTATION 

d_, characteristic dimension of particles making up the porous material; dwo , diameter 
of war~ wire; dwe, diameter of weft wire; K, ~ and K2, coefficients; K , particle ~orm factor; 
nwa , number of wires of the warp over the length 2; nwe , number of w~res of the weft over the 
length l; SZ, total area of lateral surface of wires In an arbitrary piece of gauze; t, spac- 
ing of wires in gauze; VZ, total volume~of wires in an arbitrary pieze of gauze; y, accessi- 
bility coefficient, accounting for the reduction in the total surface area of the particles 
in the material due to their mutual obstruction; ~, angle of contact of warp with weft. 
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DIFFUSION OF A PASSIVE IMPURITY IN A POROUS MEDIUM. 

FRACTAL MODEL IN THE CASE OFAN UNSATURATED MEDIUM 

A. B. Mosolov and O. Yu. Dinariev UDC 532. 546 

The theory of fractal sets is used to describe convective diffusion in a partly-sat- 
urated porous medium. 

The study of the diffusion of a passive impurity being transported by a liquid or gas in 
a porous medium is one of the main approaches used to investigate flows in porous materials. 
By introducing a neutral indicator (such as radioactive isotopes) into the flow and following 
its distribution, it is possible to obtain a large quantity of information on the motion and 
mixing of the fluid. Besides isotopes, the neutral indicator may be a pigment or even temper- 
ature if the investigator is interested in processes involving convective heat transfer. Heli- 
um is often used as the indicator in the study of transport processes in gases. 

It is particularly interesting to study convective diffusion in a partly saturated medi- 
um, since in this case it is possible to obtain information not only on the flow itself, but 
also on the geometric characteristics of the regions occupied by a single phase. It is under- 
stood that diffusion becomes "anomalous" in an unsaturated medium and differs appreciably from 
both normal molecular diffusion and convective diffusion in a completely saturated porous medi- 
um, since the diffusion coefficient depends not only on the dynamic characteristics of the 
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flow (as in the case of complete saturation) but also on the geometric characteristics of the 
one-phase regions. 

For the sake of determinateness, we will assume that we are studying the diffusion of a 
neutral impurity in a liquid while its gas (or another liquid) is being forced from a porous 
medium. Diffusion in the gas will be ignored. 

As is known [i, 2], a displacement problem such as that being studied here can be formu- 
lated in terms of percolation (flow) theory ~3, 4], and in this case the beginning of filtra- 
tion of the liquid through~he gas-saturated sample will be equivalent to the formation of an 
infinite liquid cluster permeating the sample. An infinite cluster exists at p > Pc' wh~le 
the volume fraction of liquid (saturation coefficient) c near the percolation threshold, i.e., 
at small Ap = p -- Pc > 0, exhibits the following scaling~behavior: c_ ~ (Ap/pc)8 , where 8 is a 
universal exponent dependent on the dimension of the space d, B = 0.~9 at d = 3. Similar 
scaling behavior is exhibited by certain other characteristics of the infinite cluster, such 
as the correlation length Z c ~ ~o(Ap/pc) "~ and the permeability coefficient k - m~(Ap/po) t. 
The universal exponents ~ and ~ in the three-dimenslonal space take the values ~ = ~.7~ ~ = 
O.9 [2-5]. 

It follows from the above formulas that c ~ (Zc/Zo) -8/~. The geometric structure of the 
liquid cluster near the percolation threshold is extremely complex and cannot be adequately 
described by the methods of conventlonaleuclidean geometry. However, it turns out that at 
distances Zo << Z << ~c, the structure of the cluster can be satisfactorily described within 
the framework of the theory of fractals-- sets of fractional dimensionality. 

A set F (enclosed in a euclidean space of the dimension d) will be called a fractal if 
its Hausdorff (fractal) dimension df is not a whole number (in particular, does not coincide 
with d or with the natural topological dimension F) and if F satisfies the property of self- 
similarity. By self-similarity, we mean local invariance of F relative to a discrete half- 
group of dilatations. The fractal dimension can be determined as follows: 

df = lim l n N ( e )  
e~o In(l/e) 

where N(e) is the minimum number of d-dimensional cubes of the dimension e covering the set 
F (it is understood that F is compact). It is obvious that df ! d. 

Along with geometric (regular) fractals, frequent use is also made of stochastic frac- 
tals (nearly all "natural" fractals are stochastic fractals). The properties of stochastic 
fractals are fully analogous to the properties of geometric fractals if we interpret them 
only in terms of their mean value. For example, in the formula for df, instead N(r we write 
<N(e)> for a stochastic fractal, where <.> denotes averaging over all possible realizations. 

Numerous examples of fractal sets and the corresponding definitions can be found in the 
book [6] (also see [7])~ 

A percolating cluster (near the percolation threshold) is a typical example of a stochas- 
tic fractal. It can be shown that the fractal dimension of the cluster df = d -- 8/~. Thus, 
at d = 3, we have df = 2.56. 

In connection with the use of fractal models in the present study to describe actual 
physical processes, we make the following observation. A fractal satisfying the property of 
self-similarity for all length scales is a mathematical object, and the use of fractal models 
to describe natural processes can be valid only with certain limitations on the scale of the 
phenomena being investigated. 

In the problem being examined here, there are actually two length scales: the microscale 
from the characteristic dimension of a pore-space capillary Zo to the correlation length Zc; 
the macroscale, characterizing the nonuniformity of the physical fields in the problem -- such 
as the pressure field. The macroscale is determined by the dimensions of the sample and in 
this regard depends on external (in relation to the problem being considered) parameters, 
while the microsoale depends on I c and thus, on Ap. Here, the fractal approach is used only 
in the microscale, i.e., for Zo << Z << Zc" All of the power laws governing self-simiiarity 
(with anomalous exponents) are also valid only in this region. The problem is "averaged" with 
the transition to the macroscale, and the fractal internal structure of the liquid cluster 
disappears. In the macroscale, all of the geometric parameters of the cluster and the per- 
colation processes are characterized by the normal dimension d = 3. Thus, in regard to actual 
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physical objects such as the liquid cluster being examined here, the asymptote in the defin- 
ition of the fractal dimension df should be interpreted not as an actual mathematical limit 
but only as a transition to the lengths ~ ~ 7.o, i.e., to the lower boundary of the microscale, 

Let us examine the case of steady-state filtration in a partly saturated porous medium 
at Pc < P, :p = Pc" We will assume that the mean rate of filtration is constant within the 
above-mentioned scales and is low enough so that the flow has no effect on the geometry of the 
liquid cluster. Considering this and the fact that the scales in question are appreciably 
greater than the size of the capillary, it can be assumed as a first approximation that Darcy's 
law is valid for the mean filtration velocity: 

k 
U=----q. 

Darcy's law is usually used to describe flow on the macroscopic scale, and it may not be 
satisfied for each specific cluster at the microscopic level. However, in our case, we are 
dealing with the averaged flow velocity for the clusters present. Thus, Darcy's law can he 
used in this case. 

The structure of the cluster is fairly complex and, along with the channels comprising 
its "skeleton" (and through which, of course, flow takes place), it contains a substantial 
number of blind channels (so-called "dead ends") through which liquid does not flow and which 
participate only in normal molecular (not convective) diffusion. Calculations and numerous 
experiments show [2-5, 8] that the skeleton of the cluster near the percolation threshold 
can also be regarded as a fractal. Here, the probability of the cluster c~ being associated 
with the skeleton obeys the scaling law, c~ ~ (Ap/pc)81, where ~ > ~. In three-dimensional 
space, B~ = 0.9. It follows from this that the fractal dimension of the cluster is greater 

than the fractal dimension of the skeleton dlj=d - ~-~ <dr while the mean flow velocity 

U, ~ U/c, is significantly greater than that which could be expected if an evaluation was made 
only on the basis of the saturation coefficient. 

Since the motion of a single impurity particle does not possess universality, we will 
examine the relative motion of two impurity particles. We will designate ri(t) as the posi- 

t 
tion of the i-th particle (i = i, 2)at the moment of time t, .~ (t) -- h (t) -- r= (0 = ~(0)+ .i" V(~)d~ . 

0 

Since <V(t)> = 0, we have <~(t)> = <~(0)>. This equality means that d/dt < r = 0, but 

, -~(t) may be nonvanishing. Let us investigate 

these quantities. It is evident that 

~ ( t )  = < v ( o v ( o ? ,  (1) 

t 
__a_a ~ = 2 I < V(tlV(,~) >d,~. (2"~ 
dt 'o 

The quantity (i) is easily calculated, since it is a simultaneous correlation function and is 
equal to the mean of the square of the difference in velocities at the points r,(t) and r~(t) = 
r1(t) + ~(t). Thus, 

9 
( V (t) V ( t ) )  = < Iv (rl  (t)) - -  v (r  1 (t) -1-- ~ (t))l ~ > ,~UJo (U=, r;, l=, ~), 

where U is the mean velocity of the impurity particle; fo = fo(U c, ~, I c, n) is a weight fac- 
tor associated with the fractal structure of the cluster; n is the kinematic viscosity. 

Considering the self-similarity of the liquid cluster, it can be assumed that the func- 
tion fo is invariant relative to the scale transformations x § ax, t § bt. This leads us to 
the following equation 

~o uo, a~, alo,--~--n = fo(U~, ~, l~, n), 
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thus, fo(Uc, ~, Zc, n) = f(Re c, E/Zc), where Re c -- Uc~c/n. 

In the fractal region, f determines the probability that points separated by the distance 
~(t) will belong to the active flow region, i.e., to the liquid cluster. 

For the scales Zo << ~ << Ic, we have 

" ( ~ / l ~  ~ c ;  , f tRe~., ~/I~) . . .  c=  (~ / lo )~_  , = (~/ lo)  - 6  

where ~ = d -- df, while the coefficient in the above asymptote f may depend on Re . 
C 

Accordingly, in the regularity region ~ ~ Zc, we have f(Re , ~/Z ) - c 2 The specific 
. C C =o" 

form of the function f in the transitional region $ ~ Z ms fairly complex and depends on the 
geometric properties of the porous medium, c 

An impurity particle introduced into the flow participates in two types of motion: it is 
transported by the liquid over the skeleton of the cluster at the velocity U,; having entered 
a "dead end," the particle is slowed and moves only as a result of molecular diffusion, It 
leaves the blind channel after the characteristic drift time TI ~ Z~/DI, where D~ = Do(Ap/ 
pc )t-p. _ [8], The mean drift velocity U= is evaluated by_ the .auantit~ Zc.ITc = D -17~.~. Consider- 
ing that the relative probability of the cluster being associated ~rith the skeleton is ~c~/c~. 

w e  h a v e  U~ ~ cooC~ U~ -[- ( 1--  c~C~ ,flU2 ..~ U/c| + U~. S i n c e  U,,. ~ (Ap/p~) T+v-~ a n d  U/c~ ~ (Ap/p~)T-~ , a t  

small Ap it can be assumed that Uc-U/c.. 
( I - - T ~  

To calculate (2), we assume that {V(/)V(T)> = {g(t)V(t))g -~-/-) , where g is a correlation 

function. We will assume that g(0) = 1 and that as x + ~, g(x) decreases more rapidly than 
any power of x; z c - Zc/Uc- 

Equation (2) can now be rewritten in the form 

�9 c . g (x) dx .  ( 3 )  

First we will examine the case ~ << Z e (and t << To). Then the integral in (3) can be replaced 
by the quantity ~g(0)t/T c. Thus 

.T " 

From this we find (under the condition ~o = ~(0)) 

~2~ 6 ~2+6 TI2 6 2 2 
--- ~o ~ ,Jc lc ! C.o. 

Assuming that ~ >> ~o - 0, we obtain 

d g2 2~.~2c~ 12~-1 1~6 2 - "~ 'C~ Uc <~ l .  
d t "  " ' ~ =  2 H -  6 "< 

At t > To, we find that f(Rec, ~/~c ) c~. Thus, Eq. (3) takes the form 

d ~ 2 - -  .~ 2U~ %c- ~. 2U)v, ~. = c~l~. 
dt 

Since the diffusion coefficient D c - ~ - - - -  1 d 

2 dt 
~2 , we find that in the fractal region (~ << Zc) 

Dc ~ c~=6U2=t2~-i%=6, 

while outside this region (~ Z Zc) 

D,~ U~ 

Equations (4) and (5) can have a somewhat different form. At ~ << Ic, we have 

(4) 

(5) 
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where ~, ~ a(2~-- 8) = 2.47, y, = 2a -- 1 = 0.64, while at ~ ~ 
c 

\ Pe / 

where a, = t + 8--~ = 1.19. 

Thus, we differentiate two diffusion regimes--an anomalous regime in the fractal region 
and the normal convective regime outside this region. 

In the calculations performed above, we used numerical values of the criticalpercolation 
indices obtained for network models. Since percolation is important in a number of critical 
phenomena, these indices have the property of universality, i.e,, they are nearly independent 
of the type of network. However, they may also depend on its dimensionality. In the case of 
porous materials, with the pore space having the structure of a fractal [9], this may be sig- 
nificant. Thus, the numerical values of the above-cited indices ~$and y, may change. The 
index a2 corresponds to the diffusion coefficient outside the fractal region and in this case 
should be fairly universal. 

There has been considerably less study of percolation theory on fractal sets than on reg- 
ular networks, so it is not yet possible to obtain sufficiently reliable values of the criti- 
cal percolation in relation to the dimensions of fractal sets. 

The above estimates are definitely valid when the porous materials have a sufficiently 
regular structure or a high porosity and the pore space is not fractal. 

NOTATION 

P, displacement pressure; pc,_breakthrough pressure (percolation threshold); Ap= p -- Pc; 
c| saturation coefficient; 8, 9, t, 8,, characteristic indices of the percolating cluster; 
Zc, correlation length; ~o, characteristic dimension of a pore-space capillary; m, porosity; 
k, permeability; B, viscosity; df, fractal dimension of the cluster; q, pressure gradient; 
z(t), coordinate of the impurity at the moment of time t; v(t)relative coordinate of particle 
at the moment of time t; Do, coefficient of molecular diffusion; U, filtration velocity; f, 
influence function; D,, diffusion coefficient in a partly saturated medium T, and Tc, time 
of particle drift from the "dead end', and correlation time; De, effective diffusion coeffi- 
cient. 
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